The Cost of Indirection

栏目: IT技术 · 发布时间: 5年前

内容简介:Providing zero cost abstractions is a goal of the Rust programming language. In this post we’ll explore the perforamance costs of various methods of indirection.I wanted a benchmark which emphasized the cost of indirection, so I needed to minimize the amou

Providing zero cost abstractions is a goal of the Rust programming language. In this post we’ll explore the perforamance costs of various methods of indirection.

The benchmark

I wanted a benchmark which emphasized the cost of indirection, so I needed to minimize the amount of work done in any single call of a function. I settled on solving the nth odd number problem (a play on the nth prime problem), using a shockingly inefficient algorithm.

use std::time::Instant;

fn main() {
    let start_time = Instant::now();
    let result = find_nth_odd(1_000_000_000);
    let elapsed_time = start_time.elapsed().as_millis();

    println!("{} in {} ms", result, elapsed_time);
}

fn find_nth_odd(n: u64) -> u64 {
    let mut i = 0;
    let mut odd_count = 0;

    while odd_count != n {
        i += 1;
        if is_odd(i) {
            odd_count += 1;
        }
    }

    i
}

fn is_odd(n: u64) -> bool {
    n % 2 == 1
}

This finds the billionth odd number in 1042 ms. All performance numbers reported in this post are the average of 5 runs, using the 1.41 compiler.

Struct impl

The simplest indirection is moving the is_odd function into a struct impl block.

use std::time::Instant;

fn main() {
    let finder = OddFinder;

    let start_time = Instant::now();
    let result = find_nth_odd(finder, 1_000_000_000);
    let elapsed_time = start_time.elapsed().as_millis();

    println!("{} in {} ms", result, elapsed_time);
}

fn find_nth_odd(odd_finder: OddFinder, n: u64) -> u64 {
    let mut i = 0;
    let mut odd_count = 0;

    while odd_count != n {
        i += 1;
        if odd_finder.is_odd(i) {
            odd_count += 1;
        }
    }

    i
}

struct OddFinder;

impl OddFinder {
    fn is_odd(&self, n: u64) -> bool {
        n % 2 == 1
    }
}

This is a great demonstration of Rust’s zero costs abstractions, finding the billionth odd number in 1032 ms.

Trait

What happens if the is_odd method is part of a trait, rather than directly on the struct?

use std::time::Instant;

fn main() {
    let finder = OddFinderOne;

    let start_time = Instant::now();
    let result = find_nth_odd(finder, 1_000_000_000);
    let elapsed_time = start_time.elapsed().as_millis();

    println!("{} in {} ms", result, elapsed_time);
}

fn find_nth_odd(odd_finder: OddFinderOne, n: u64) -> u64 {
    let mut i = 0;
    let mut odd_count = 0;

    while odd_count != n {
        i += 1;
        if odd_finder.is_odd(i) {
            odd_count += 1;
        }
    }

    i
}

trait OddFinder {
    fn is_odd(&self, n: u64) -> bool;
}

struct OddFinderOne;

impl OddFinder for OddFinderOne {
    fn is_odd(&self, n: u64) -> bool {
        n % 2 == 1
    }
}

Surprisingly moving this method behind a trait is not a zero cost abstraction, even though the find_nth_odd function still takes the specific OddFinderOne implementation. This version finds the billionth prime in 1340 ms.

Generics

If multiple structs exist which are capable of finding odd numbers, we can use generics to allow our find_nth_odd method to use any of them.

use std::time::Instant;

fn main() {
    let finder = OddFinderOne;

    let start_time = Instant::now();
    let result = find_nth_odd(finder, 1_000_000_000);
    let elapsed_time = start_time.elapsed().as_millis();

    println!("{} in {} ms", result, elapsed_time);
}

fn find_nth_odd<T: OddFinder>(odd_finder: T, n: u64) -> u64 {
    let mut i = 0;
    let mut odd_count = 0;

    while odd_count != n {
        i += 1;
        if odd_finder.is_odd(i) {
            odd_count += 1;
        }
    }

    i
}

trait OddFinder {
    fn is_odd(&self, n: u64) -> bool;
}

struct OddFinderOne;

impl OddFinder for OddFinderOne {
    fn is_odd(&self, n: u64) -> bool {
        n % 2 == 1
    }
}

struct OddFinderTwo;

impl OddFinder for OddFinderTwo {
    fn is_odd(&self, _n: u64) -> bool {
        unimplemented!()
    }
}

This is another positive example of zero cost abstractions. It runs at essentially the same speed as the initial non-generic trait-based version of the program (above), finding the billionth prime in 1322 ms.

Trait Object

Rather than making our find_nth_odd function generic, an alternate approach to allow it to accept any OddFinder implementation is to use trait objects.

use std::time::Instant;

fn main() {
    let finder = OddFinderOne;

    let start_time = Instant::now();
    let result = find_nth_odd(&finder, 1_000_000_000);
    let elapsed_time = start_time.elapsed().as_millis();

    println!("{} in {} ms", result, elapsed_time);
}


fn find_nth_odd(odd_finder: & dyn OddFinder, n: u64) -> u64 {
    let mut i = 0;
    let mut odd_count = 0;

    while odd_count != n {
        i += 1;
        if odd_finder.is_odd(i) {
            odd_count += 1;
        }
    }

    i
}

trait OddFinder {
    fn is_odd(&self, n: u64) -> bool;
}

struct OddFinderOne;

impl OddFinder for OddFinderOne {
    fn is_odd(&self, n: u64) -> bool {
        n % 2 == 1
    }
}

struct OddFinderTwo;

impl OddFinder for OddFinderTwo {
    fn is_odd(&self, _n: u64) -> bool {
        unimplemented!()
    }
}

I expected this to perform worse than the generic implementation, since trait objects should require dynamic dispatch (the program will have to look up the location of the correct is_odd implementation at run time), but it seems the compiler was able to see that finder is always OddFinderOne and perform some additional optimizations, because this calculated the billionth odd number in 1039 ms (average of 5 runs). This is not only better than the generic implementation but it is actually on par with the baseline, which was a very surprising outcome to me.

Boxed Trait Object

The other way to use trait objects is by passing a Box<dyn Trait> (as opposed to & dyn Trait shown above).

use std::time::Instant;

fn main() {
    let finder: Box<dyn OddFinder> = Box::new(OddFinderOne);

    let start_time = Instant::now();
    let result = find_nth_odd(finder, 1_000_000_000);
    let elapsed_time = start_time.elapsed().as_millis();

    println!("{} in {} ms", result, elapsed_time);
}


fn find_nth_odd(odd_finder: Box<dyn OddFinder>, n: u64) -> u64 {
    let mut i = 0;
    let mut odd_count = 0;

    while odd_count != n {
        i += 1;
        if odd_finder.is_odd(i) {
            odd_count += 1;
        }
    }

    i
}

trait OddFinder {
    fn is_odd(&self, n: u64) -> bool;
}

struct OddFinderOne;

impl OddFinder for OddFinderOne {
    fn is_odd(&self, n: u64) -> bool {
        n % 2 == 1
    }
}

struct OddFinderTwo;

impl OddFinder for OddFinderTwo {
    fn is_odd(&self, _n: u64) -> bool {
        unimplemented!()
    }
}

This calculated the billionth odd number in 1314 ms.

Runtime dynamism

To this point we haven’t given the compiler any abstraction it couldn’t see through at compile time. Even though we had two OddFinder implementations, we were always hard coding the program to use OddFinderOne . We’ll change that here, to see what happens when the compiler cannot make this type of optimization.

use std::{env, time::Instant};

fn main() {
    // I don't intend to ever set this environment variable. The purpose
    // of this is only to ensure the compiler won't be able to know
    // which of the two OddFinder implementations we will use.
    let finder: Box<dyn OddFinder> = match env::var("USE_FINDER_TWO") {
        Ok(use_finder_two) if use_finder_two == String::from("True")
            => Box::new(OddFinderTwo),
        _ => Box::new(OddFinderOne),
    };

    let start_time = Instant::now();
    let result = find_nth_odd(finder, 1_000_000_000);
    let elapsed_time = start_time.elapsed().as_millis();

    println!("{} in {} ms", result, elapsed_time);
}


fn find_nth_odd(odd_finder: Box<dyn OddFinder>, n: u64) -> u64 {
    let mut i = 0;
    let mut odd_count = 0;

    while odd_count != n {
        i += 1;
        if odd_finder.is_odd(i) {
            odd_count += 1;
        }
    }

    i
}

trait OddFinder {
    fn is_odd(&self, n: u64) -> bool;
}

struct OddFinderOne;

impl OddFinder for OddFinderOne {
    fn is_odd(&self, n: u64) -> bool {
        n % 2 == 1
    }
}

struct OddFinderTwo;

impl OddFinder for OddFinderTwo {
    fn is_odd(&self, _n: u64) -> bool {
        unimplemented!()
    }
}

As expected this version is much slower, as we can be sure dynamic dispatch is required here to determine which is_odd function to call, based on whichever OddFinder implementation is being used. This version found the billionth prime in 3424 ms.

Enum

Rather than taking in a trait object, we can modify our find_nth_odd function to take an enum containing any possible OddFinder implementation.

use std::{env, time::Instant};

fn main() {
    // I don't intend to ever set this environment variable. The purpose
    // of this is only to ensure the compiler won't be able to know
    // which of the two OddFinder implementations we will use.
    let finder: OddFinders = match env::var("USE_FINDER_TWO") {
        Ok(use_finder_two) if use_finder_two == String::from("True")
            => OddFinders::Two(OddFinderTwo),
        _ => OddFinders::One(OddFinderOne),
    };

    let start_time = Instant::now();
    let result = find_nth_odd(finder, 1_000_000_000);
    let elapsed_time = start_time.elapsed().as_millis();

    println!("{} in {} ms", result, elapsed_time);
}


fn find_nth_odd(odd_finder: OddFinders, n: u64) -> u64 {
    let mut i = 0;
    let mut odd_count = 0;

    while odd_count != n {
        i += 1;
        if odd_finder.is_odd(i) {
            odd_count += 1;
        }
    }

    i
}

trait OddFinder {
    fn is_odd(&self, n: u64) -> bool;
}

struct OddFinderOne;

impl OddFinder for OddFinderOne {
    fn is_odd(&self, n: u64) -> bool {
        n % 2 == 1
    }
}

struct OddFinderTwo;

impl OddFinder for OddFinderTwo {
    fn is_odd(&self, _n: u64) -> bool {
        unimplemented!()
    }
}

enum OddFinders {
    One(OddFinderOne),
    Two(OddFinderTwo),
}

impl OddFinder for OddFinders {
    fn is_odd(&self, n: u64) -> bool {
        match self {
            OddFinders::One(finder) => finder.is_odd(n),
            OddFinders::Two(finder) => finder.is_odd(n),
        }
    }
}

Relative to the boxed trait object, here we are trading dynamic dispatch for a runtime enum match statement. This turns out to be a big performance win, allowing this version to find the billionth prime in 1366 ms.

Inline never

For fun, I re-ran the baseline with #[inline(never)] on the is_odd function. This increased the time required to calculate the billionth odd number to 3378 ms.

Conclusion

Making performance predications in the presence of an optimizing compiler is difficult. Extrapolating performance results for one workload to predict the performance against a different workload is also challenging.

Those disclaimers aside I think there are some interesting findings here. The first is that moving a method behind a trait increases the runtime cost, even when called directly on the struct (as opposed to through a trait object). The second is that, at least in this benchmark, creating an enum of all possible trait implementors and passing that into a function is significantly (roughly 3x here) faster than using a boxed trait object.

All code is available here . If you discover issues with any of these benchmarks feel free to open issues/pull requests on GitHub.


以上所述就是小编给大家介绍的《The Cost of Indirection》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

复制互联网之2

复制互联网之2

文飞翔//刘伟 / 清华大学出版社 / 2011-6 / 45.00元

《复制互联网之2:2011年全球最值得模仿的100个网站》从行业的整体发展趋势中,收录了国内外最值得关注的互联网商业模式,为初创网站设计者提供了诸多可供借鉴的最具有启发价值的商业案例。此外,《复制互联网之2:2011年全球最值得模仿的100个网站》对前沿互联网产品的介绍和思考,也值得网站开发人员、产品设计人员及公司管理人员在产品和运营的创新上借鉴与参考。 作者是网易科技频道的编辑,长期致力于......一起来看看 《复制互联网之2》 这本书的介绍吧!

HTML 编码/解码
HTML 编码/解码

HTML 编码/解码

URL 编码/解码
URL 编码/解码

URL 编码/解码