StellarGraph v0.10 Open-Source Python Machine Learning Library for Graphs

栏目: IT技术 · 发布时间: 5年前

内容简介:StellarGraph is an open-source library featuring state-of-the-art graph machine learning algorithms. The project is delivered as part of CSIRO’s Data61.Dramatically improved memory usage is the key feature of the 0.10 release of the library, with the Stell

StellarGraph is an open-source library featuring state-of-the-art graph machine learning algorithms. The project is delivered as part of CSIRO’s Data61.

Dramatically improved memory usage is the key feature of the 0.10 release of the library, with the StellarGraph and StellarDiGraph classes now backed by NumPy and Pandas. This will enable significant performance benefits.

Version 0.10 (https://github.com/stellargraph/stellargraph/releases/tag/v0.10.0) also features two new algorithms:

- Link prediction with directed GraphSAGE

- GraphWave, which computes structural node embeddings by using wavelet transforms on the graph Laplacian.

Other new algorithms and features remain under active development, but are available in this release as experimental previews. These include:

- Temporal Random Walks: random walks that respect the time that each edge occurred (stored as edge weights)

- Watch Your Step: computes node embeddings by simulating the effect of random walks, rather than doing them

- ComplEx: computes embeddings for nodes and edge types in knowledge graphs, and uses these to perform link prediction

- Neo4j connector: the GraphSAGE algorithm can execute neighbourhood sampling from a Neo4j database, so the edges of a graph do not have to fit into memory.

The new release also incorporates key bug fixes and improvements:

- StellarGraph now supports TensorFlow 2.1

- Demos now focus on Jupyter notebooks

- Supervised GraphSAGE Node Attribute Inference algorithm is now reproducible

- Code for saliency maps/interpretability refactored to have more sharing, making it cleaner and easier to extend

- Demo notebooks predominantly tested on CI using Papermill, so won't become out of date.

Find StellarGraph on GitHub (https://github.com/stellargraph/stellargraph).

We welcome your feedback and contributions.

Until next time, the StellarGraph team.


以上所述就是小编给大家介绍的《StellarGraph v0.10 Open-Source Python Machine Learning Library for Graphs》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Web界面设计

Web界面设计

Bill Scott、Theresa Neil / 李松峰 / 电子工业出版社 / 2009年7月 / 80.00元

当前的Web已经进入崭新的时代!本书涵盖了在基于独一无二的Web环境下、在创建丰富体验的过程中设计Web界面的最佳实践、模式和原理。UI专家Bill Scott和Theresa Neil在他们多年实践经验和不懈探索的基础上,总结提炼出了Web界面设计的六大原理——直截了当、简化交互、足不出户、提供邀请、使用变换和即时反应,并以这六大原理为依托,以当今Web上各类开风气之先的流行网站为示例,向读者展......一起来看看 《Web界面设计》 这本书的介绍吧!

在线进制转换器
在线进制转换器

各进制数互转换器

URL 编码/解码
URL 编码/解码

URL 编码/解码

UNIX 时间戳转换
UNIX 时间戳转换

UNIX 时间戳转换