StellarGraph v0.10 Open-Source Python Machine Learning Library for Graphs

栏目: IT技术 · 发布时间: 4年前

内容简介:StellarGraph is an open-source library featuring state-of-the-art graph machine learning algorithms. The project is delivered as part of CSIRO’s Data61.Dramatically improved memory usage is the key feature of the 0.10 release of the library, with the Stell

StellarGraph is an open-source library featuring state-of-the-art graph machine learning algorithms. The project is delivered as part of CSIRO’s Data61.

Dramatically improved memory usage is the key feature of the 0.10 release of the library, with the StellarGraph and StellarDiGraph classes now backed by NumPy and Pandas. This will enable significant performance benefits.

Version 0.10 (https://github.com/stellargraph/stellargraph/releases/tag/v0.10.0) also features two new algorithms:

- Link prediction with directed GraphSAGE

- GraphWave, which computes structural node embeddings by using wavelet transforms on the graph Laplacian.

Other new algorithms and features remain under active development, but are available in this release as experimental previews. These include:

- Temporal Random Walks: random walks that respect the time that each edge occurred (stored as edge weights)

- Watch Your Step: computes node embeddings by simulating the effect of random walks, rather than doing them

- ComplEx: computes embeddings for nodes and edge types in knowledge graphs, and uses these to perform link prediction

- Neo4j connector: the GraphSAGE algorithm can execute neighbourhood sampling from a Neo4j database, so the edges of a graph do not have to fit into memory.

The new release also incorporates key bug fixes and improvements:

- StellarGraph now supports TensorFlow 2.1

- Demos now focus on Jupyter notebooks

- Supervised GraphSAGE Node Attribute Inference algorithm is now reproducible

- Code for saliency maps/interpretability refactored to have more sharing, making it cleaner and easier to extend

- Demo notebooks predominantly tested on CI using Papermill, so won't become out of date.

Find StellarGraph on GitHub (https://github.com/stellargraph/stellargraph).

We welcome your feedback and contributions.

Until next time, the StellarGraph team.


以上所述就是小编给大家介绍的《StellarGraph v0.10 Open-Source Python Machine Learning Library for Graphs》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

UX设计之道

UX设计之道

[美]Russ Unger、[美]Carolyn Chandler / 陈军亮 / 人民邮电出版社 / 2015-4-1 / 49.00元

本书的目标是提供一些基本的工具及应用场景,帮助你及工作团队一起来使用这些工具和方法。正如你将在本书很多章节中看到的那样,我们没有尝试包罗万象、迎和所有的人,但我们试图给你提供一些用户体验(UX)设计师需要具备的核心信息和知识。除了我们自己的案例外,我们还提供了一些帮你了解如何开始准备基本材料的案例,让你可综合这些信息来创建某些更新、更好或者是更适合自己意图的东西。一起来看看 《UX设计之道》 这本书的介绍吧!

图片转BASE64编码
图片转BASE64编码

在线图片转Base64编码工具

MD5 加密
MD5 加密

MD5 加密工具

正则表达式在线测试
正则表达式在线测试

正则表达式在线测试