Notes on linear transformations

栏目: IT技术 · 发布时间: 5年前

内容简介:To place an object on a screen, you typically need to:This post explores well-known methods to,orobjects, and tomultiple transformations at once.If you think of an object as a set of points in a coordinate system, you can describe characteristics of the ob

To place an object on a screen, you typically need to:

  1. Move the object to the desired location.
  2. Scale the object to fit well with other objects.
  3. Rotate the object to the desired orientation.

This post explores well-known methods to,orobjects, and tomultiple transformations at once.

Describing the position of objects

If you think of an object as a set of points in a coordinate system, you can describe characteristics of the object such as its position and shape with the position of each point.

The canonical example of a point set is a rectangle:

Notes on linear transformations
Note how the points change during this scale transformation.

You can think of these points as offset vectors from the origin or n by 1 matrices. By modifying these matrices with mathematical operations, you can effectively change attributes from the object.

More specifically, you can do a linear transformation using a matrix to transform this vector. For example, for n = 2 :

a b
c d
x
y
=
x’
y’

There are certain matrix configurations that produce known results, by modifying values on this known matrices, you can,oran object.

You can alsocombine multiple transformationsinto a single matrix that performs all the transformations at once.

This post focuses on two-dimensional transformations because they are easier to understand, but the concepts work in any space.

Scaling is used to make an object bigger or smaller, mathematically this means multiplying each coordinate by a constant.

You scale an object uniformly with a matrix that has the following shape:

scale(sx, sy) =
s x 0
0 s y
x
y
=
s x x
s y y

Below is a live example you can play with, move the slider to see how different values change the box:

You scale uniformly across different axis by giving different values to sx and sy or scale only in one axis by keeping the other constant. Here is an example of scaling only affecting the y axis:

Reflection

You can reflect a vector across either of the axes by using a negative scale factor. In the example below, the rectangle is reflected horizontally by using a scaling factor of -1 in the x axis.

To rotate each point about the origin with the same angle use rotation transforms.

To rotate an object by an angle ϕ , you need to:

rotate(ϕ) =
cos(ϕ) -sin(ϕ)
sin(ϕ) cos(ϕ)
x
y

In the example below, you can see a rotation matrix in action ( ϕ defined in radians.) You can move the slider to see the values update.

Shear transforms pushes or “tilts” objects vertically or horizontally.

To shear an object vertically, you can use the following matrix:

shear-y(s) =
1 0
s 1
x
y

And to shear an object vertically you can use:

shear-x(s) =
1 s
0 1
x
y

Combining transformations

You can subsequently apply multiple transformations one after the other to the same object to get a more complex transformation, for example, given this box:

If you apply a scale(1.3) transformation, you get:

If you subsequently apply a shear-x(-0.3) transform, you get the final result of:

You can express the following example as a composition: shear-x(scale(X)) , and apply multiple transforms to end up with a desired object:

1.3 0
0 1.3
1 0
-0.3 1
x
y
=
1.3 0
-0.30 1.3
x
y

以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

JavaScript凌厉开发

JavaScript凌厉开发

张鑫 黄灯桥、杨彦强 / 清华大学出版社 / 2010 年4月 / 49.00元

本书详细介绍Ext JS框架体系结构,以及利用HTML/CSS/JavaScript进行前端设计的方法和技巧。作者为Ext中文站站长领衔的三个国内Ext JS先锋,在开发思维和开发经验上有着无可争议的功力。 本书包含的内容有Ext.Element.*、事件Observable、Ext组件+MVC原理、Grid/Form/Tree/ComboBox、Ajax缓存Store等,并照顾JavaSc......一起来看看 《JavaScript凌厉开发》 这本书的介绍吧!

XML 在线格式化
XML 在线格式化

在线 XML 格式化压缩工具

html转js在线工具
html转js在线工具

html转js在线工具

HEX CMYK 转换工具
HEX CMYK 转换工具

HEX CMYK 互转工具