rlpyt includes modular, optimized implementations of common deep RL algorithms in PyTorch, with unified infrastructure supporting all three major families of model-free algorithms: policy gradient, deep-q learning, and q-function policy gradient. It is intended to be a high-throughput code-base for small- to medium-scale research (large-scale meaning like OpenAI Dota with 100’s GPUs). A conceptual overview is provided in the white paper , and the code (with examples) in the github repository .
This documentation aims to explain the intent of the code structure, to make it easier to use and modify (it might not detail every keyword argument as in a fixed library). See the github README for installation instructions and other introductory notes. Please share any questions or comments to do with documenantation on the github issues.
The sections are organized as follows. First, several of the base classes are introduced. Then, each algorithm family and associated agents and models are grouped together. Infrastructure code such as the runner classes and sampler classes are covered next. All the remaining components are covered thereafter, in no particular order.
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
算法竞赛入门经典
刘汝佳 / 清华大学出版社 / 2009-11 / 24.00元
《算法竞赛入门经典》是一本算法竞赛的入门教材,把C/C++语言、算法和解题有机地结合在了一起,淡化理论,注重学习方法和实践技巧。全书内容分为11章,包括程序设计入门、循环结构程序设计、数组和字符串、函数和递归、基础题目选解、数据结构基础、暴力求解法、高效算法设计、动态规划初步、数学概念与方法、图论模型与算法,覆盖了算法竞赛入门所需的主要知识点,并附有大量习题。书中的代码规范、简洁、易懂,不仅能帮助......一起来看看 《算法竞赛入门经典》 这本书的介绍吧!