Rlpyt: A Research Code Base for Deep Reinforcement Learning in PyTorch

栏目: IT技术 · 发布时间: 4年前

rlpyt includes modular, optimized implementations of common deep RL algorithms in PyTorch, with unified infrastructure supporting all three major families of model-free algorithms: policy gradient, deep-q learning, and q-function policy gradient. It is intended to be a high-throughput code-base for small- to medium-scale research (large-scale meaning like OpenAI Dota with 100’s GPUs). A conceptual overview is provided in the white paper , and the code (with examples) in the github repository .

This documentation aims to explain the intent of the code structure, to make it easier to use and modify (it might not detail every keyword argument as in a fixed library). See the github README for installation instructions and other introductory notes. Please share any questions or comments to do with documenantation on the github issues.

The sections are organized as follows. First, several of the base classes are introduced. Then, each algorithm family and associated agents and models are grouped together. Infrastructure code such as the runner classes and sampler classes are covered next. All the remaining components are covered thereafter, in no particular order.


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

可用性工程

可用性工程

尼尔森 / 刘正捷 / 机械工业出版社 / 2004-1 / 28.00元

《可用性工程》系统地介绍可用性工程,被国际可用性工程界一致推崇为该领域的最佳入门书籍。《可用性工程》着重讲述了能取得良好成本效益的可用性方法,并详细介绍了在软件开发生命周期的不同阶段如何运用这些方法,以及其他与可用性相关的特殊问题。一起来看看 《可用性工程》 这本书的介绍吧!

CSS 压缩/解压工具
CSS 压缩/解压工具

在线压缩/解压 CSS 代码

XML、JSON 在线转换
XML、JSON 在线转换

在线XML、JSON转换工具

UNIX 时间戳转换
UNIX 时间戳转换

UNIX 时间戳转换