Demystifying Differentiable Programming (2018)

栏目: IT技术 · 发布时间: 5年前

Abstract: Deep learning has seen tremendous success over the past decade in computer vision, machine translation, and gameplay. This success rests in crucial ways on gradient-descent optimization and the ability to learn parameters of a neural network by backpropagating observed errors. However, neural network architectures are growing increasingly sophisticated and diverse, which motivates an emerging quest for even more general forms of differentiable programming, where arbitrary parameterized computations can be trained by gradient descent. In this paper, we take a fresh look at automatic differentiation (AD) techniques, and especially aim to demystify the reverse-mode form of AD that generalizes backpropagation in neural networks.

We uncover a tight connection between reverse-mode AD and delimited continuations, which permits implementing reverse-mode AD purely via operator overloading and without any auxiliary data structures. We further show how this formulation of AD can be fruitfully combined with multi-stage programming (staging), leading to a highly efficient implementation that combines the performance benefits of deep learning frameworks based on explicit reified computation graphs (e.g., TensorFlow) with the expressiveness of pure library approaches (e.g., PyTorch).


以上所述就是小编给大家介绍的《Demystifying Differentiable Programming (2018)》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

新零售进化论

新零售进化论

陈欢、陈澄波 / 中信出版社 / 2018-7 / 49.00

本书主要介绍了新零售的进化现象和规律,提出了新零售的第一性原理是物理数据二重性,即在新零售时代,所有的人、货、场既是物理的也是数据的。 通过这个原点,进一步衍生出了新零售的八大核心算法,并用大量的辅助观点和新零售案例来揭示新零售背后的算法逻辑。 综合一系列的理论推演和案例讲解,作者重点回答了以下3个问题: ● 我们是行业的强者,如果跟不上新零售的潮流,会不会被淘汰? ● 我......一起来看看 《新零售进化论》 这本书的介绍吧!

SHA 加密
SHA 加密

SHA 加密工具

XML 在线格式化
XML 在线格式化

在线 XML 格式化压缩工具

html转js在线工具
html转js在线工具

html转js在线工具