Apache Hudi索引实现分析(三)之HBaseIndex

栏目: IT技术 · 发布时间: 4年前

内容简介:前面分析了基于过滤器的索引,接着分析基于外部存储系统的索引实现:HBaseIndex。对于想自定义实现Index具有一定的借鉴作用。HBaseIndex也是HoodieIndex的子类实现,其实现了父类的两个核心方法。在写入数据过程中,会调用

1. 介绍

前面分析了基于过滤器的索引,接着分析基于外部存储系统的索引实现:HBaseIndex。对于想自定义实现Index具有一定的借鉴作用。

2. 分析

HBaseIndex也是HoodieIndex的子类实现,其实现了父类的两个核心方法。

// 给输入记录RDD打位置标签 
public JavaRDD<HoodieRecord<T>> tagLocation(JavaRDD<HoodieRecord<T>> recordRDD, JavaSparkContext jsc, HoodieTable<T> hoodieTable);
// 更新位置信息    
public JavaRDD<WriteStatus> updateLocation(JavaRDD<WriteStatus> writeStatusRDD, JavaSparkContext jsc, HoodieTable<T> hoodieTable);

在写入数据过程中,会调用 tagLocation 给输入记录打位置标签,其核心代码如下

  public JavaRDD<HoodieRecord<T>> tagLocation(JavaRDD<HoodieRecord<T>> recordRDD, JavaSparkContext jsc,
      HoodieTable<T> hoodieTable) {  
    return recordRDD.mapPartitionsWithIndex(locationTagFunction(hoodieTable.getMetaClient()), true);
  }

可以看到该方法主要使用了 locationTagFunction Function来处理原始记录,其核心代码如下

  private Function2<Integer, Iterator<HoodieRecord<T>>, Iterator<HoodieRecord<T>>> locationTagFunction(
      HoodieTableMetaClient metaClient) {

    return (Function2<Integer, Iterator<HoodieRecord<T>>, Iterator<HoodieRecord<T>>>) (partitionNum,
        hoodieRecordIterator) -> {
      // 每次取的批次大小   
      int multiGetBatchSize = config.getHbaseIndexGetBatchSize();

      // 获取HBase连接
      synchronized (HBaseIndex.class) {
        if (hbaseConnection == null || hbaseConnection.isClosed()) {
          hbaseConnection = getHBaseConnection();
        }
      }
      List<HoodieRecord<T>> taggedRecords = new ArrayList<>();
      HTable hTable = null;
      try {
        // 获取配置的表  
        hTable = (HTable) hbaseConnection.getTable(TableName.valueOf(tableName));
        List<Get> statements = new ArrayList<>();
        List<HoodieRecord> currentBatchOfRecords = new LinkedList<>();
        // 遍历该分区上的记录
        while (hoodieRecordIterator.hasNext()) {
          HoodieRecord rec = hoodieRecordIterator.next();
          // 根据recordKey生成Get  
          statements.add(generateStatement(rec.getRecordKey()));
          currentBatchOfRecords.add(rec);
          // 达到批量大小或者遍历完记录
          if (statements.size() >= multiGetBatchSize || !hoodieRecordIterator.hasNext()) {
            // 获取结果
            Result[] results = doGet(hTable, statements);
            // 清空便于GC回收
            statements.clear();
            for (Result result : results) {
              // 移除结果对应的的HoodieRecord
              HoodieRecord currentRecord = currentBatchOfRecords.remove(0);
              if (result.getRow() != null) {
                // 取出key, commit时间,文件ID和分区路径  
                String keyFromResult = Bytes.toString(result.getRow());
                String commitTs = Bytes.toString(result.getValue(SYSTEM_COLUMN_FAMILY, COMMIT_TS_COLUMN));
                String fileId = Bytes.toString(result.getValue(SYSTEM_COLUMN_FAMILY, FILE_NAME_COLUMN));
                String partitionPath = Bytes.toString(result.getValue(SYSTEM_COLUMN_FAMILY, PARTITION_PATH_COLUMN));
                // 检查是否为合法的提交(包含在timeline或者小于最新的一次commit)
                if (checkIfValidCommit(metaClient, commitTs)) {
                  // 重新生成HoodieRecord  
                  currentRecord = new HoodieRecord(new HoodieKey(currentRecord.getRecordKey(), partitionPath),
                      currentRecord.getData());
                  currentRecord.unseal();
                  // 设置位置信息  
                  currentRecord.setCurrentLocation(new HoodieRecordLocation(commitTs, fileId));
                  currentRecord.seal();
                  taggedRecords.add(currentRecord);
                  // the key from Result and the key being processed should be same
                  assert (currentRecord.getRecordKey().contentEquals(keyFromResult));
                } else { // 非法提交,也标记为已打完标签
                  taggedRecords.add(currentRecord);
                }
              } else { // 标记为已打完标签
                taggedRecords.add(currentRecord);
              }
            }
          }
        }
      }
      return taggedRecords.iterator();
    };
  }

可以看到从HBase中取位置信息流程非常简单,即遍历指定分区上所有记录,然后批量生成recordKey从HBase索引表(表名自定义配置)取对应的信息,然后生成位置信息。

当写完数据后,需要调用 updateLocation 更新记录的位置信息,其核心代码如下

  public JavaRDD<WriteStatus> updateLocation(JavaRDD<WriteStatus> writeStatusRDD, JavaSparkContext jsc,
      HoodieTable<T> hoodieTable) {
    // 根据配置(hoodie.index.hbase.qps.allocator.class)生成Allocator  
    final HBaseIndexQPSResourceAllocator hBaseIndexQPSResourceAllocator = createQPSResourceAllocator(this.config);
    // 根据Allocator进行初始化  
    setPutBatchSize(writeStatusRDD, hBaseIndexQPSResourceAllocator, jsc);
    // 使用Function处理  
    JavaRDD<WriteStatus> writeStatusJavaRDD = writeStatusRDD.mapPartitionsWithIndex(updateLocationFunction(), true);
    // 缓存状态RDD
    writeStatusJavaRDD = writeStatusJavaRDD.persist(config.getWriteStatusStorageLevel());
    return writeStatusJavaRDD;
  }

其中 updateLocationFunction 核心代码如下

  private Function2<Integer, Iterator<WriteStatus>, Iterator<WriteStatus>> updateLocationFunction() {

    return (Function2<Integer, Iterator<WriteStatus>, Iterator<WriteStatus>>) (partition, statusIterator) -> {

      List<WriteStatus> writeStatusList = new ArrayList<>();
      // 获取HBase连接
      synchronized (HBaseIndex.class) {
        if (hbaseConnection == null || hbaseConnection.isClosed()) {
          hbaseConnection = getHBaseConnection();
        }
      }
      try (BufferedMutator mutator = hbaseConnection.getBufferedMutator(TableName.valueOf(tableName))) {
        // 遍历状态信息  
        while (statusIterator.hasNext()) {
          WriteStatus writeStatus = statusIterator.next();
          List<Mutation> mutations = new ArrayList<>();
          try {
            for (HoodieRecord rec : writeStatus.getWrittenRecords()) {
              if (!writeStatus.isErrored(rec.getKey())) {
                // 获取新的位置信息  
                Option<HoodieRecordLocation> loc = rec.getNewLocation();
                if (loc.isPresent()) { // 新的位置信息存在
                  if (rec.getCurrentLocation() != null) { // 当前位置信息存在
                    // 表示更新,无需更新
                    continue;
                  }
                  // 根据HoodieRecord信息初始化Put  
                  Put put = new Put(Bytes.toBytes(rec.getRecordKey()));
                  put.addColumn(SYSTEM_COLUMN_FAMILY, COMMIT_TS_COLUMN, Bytes.toBytes(loc.get().getInstantTime()));
                  put.addColumn(SYSTEM_COLUMN_FAMILY, FILE_NAME_COLUMN, Bytes.toBytes(loc.get().getFileId()));
                  put.addColumn(SYSTEM_COLUMN_FAMILY, PARTITION_PATH_COLUMN, Bytes.toBytes(rec.getPartitionPath()));
                  mutations.add(put);
                } else { // 新的位置不存在
                  // 表示删除了该记录
                  Delete delete = new Delete(Bytes.toBytes(rec.getRecordKey()));
                  mutations.add(delete);
                }
              }
              if (mutations.size() < multiPutBatchSize) {
                continue;
              }
              // 更新  
              doMutations(mutator, mutations);
            }
            // 处理剩余的更新
            doMutations(mutator, mutations);
          } 
          writeStatusList.add(writeStatus);
        }
      } 
      return writeStatusList.iterator();
    };
  }

可以看到当写完数据后,会更新位置信息,通过WriteStatus中的HoodieRecord的位置信息判断是否需要更新位置信息,对于更新无需要更新,对于新插入需要更新,对于删除需要删除HBase中存储的信息。

3. 总结

Hudi内置了HBase外置存储系统索引的实现,用户可直接配置HBase索引,将记录索引信息存入HBase,当然用户也可自定义实现其他类型索引。

Apache Hudi索引实现分析(三)之HBaseIndex

Apache Hudi索引实现分析(三)之HBaseIndex


以上所述就是小编给大家介绍的《Apache Hudi索引实现分析(三)之HBaseIndex》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Non-Obvious

Non-Obvious

Rohit Bhargava / Ideapress Publishing / 2015-3-29 / USD 24.95

What do Disney, Bollywood, and The Batkid teach us about how to create celebrity experiences for our audiences? How can a vending-machine inspire world peace? Can being imperfect make your business mo......一起来看看 《Non-Obvious》 这本书的介绍吧!

RGB转16进制工具
RGB转16进制工具

RGB HEX 互转工具

XML 在线格式化
XML 在线格式化

在线 XML 格式化压缩工具