LevelDB Seek() 特别慢的场景

栏目: IT技术 · 发布时间: 5年前

内容简介:在某些场景, 特别是一次性删除大量的连续 key 的情况下, LevelDB 的 Seek() 操作将变得特别慢. 我在源码中打点, 简单分析了其出现的原因.首先, LevelDB 对 Delete 操作处理, 是将被删除的 Key 做标记, 并在未来某个时间将真正的数据和这个标记从硬盘上删除. 在真正的删除之前, 标记本身也会排序(即 key-type)存储在 sst 文件中.所以, 如果删除大量的连续 key, 那么这些 key 会聚集在一起, 存储在某个 sst 文件中. 当 Seek() 操作时,

在某些场景, 特别是一次性删除大量的连续 key 的情况下, LevelDB 的 Seek() 操作将变得特别慢. 我在源码中打点, 简单分析了其出现的原因.

首先, LevelDB 对 Delete 操作处理, 是将被删除的 Key 做标记, 并在未来某个时间将真正的数据和这个标记从硬盘上删除. 在真正的删除之前, 标记本身也会排序(即 key-type)存储在 sst 文件中.

所以, 如果删除大量的连续 key, 那么这些 key 会聚集在一起, 存储在某个 sst 文件中. 当 Seek() 操作时, 会定位到这个 sst 文件头部, 然后开始扫描, 跳过所有标记, 直到找到非标记的 key. 显然, 跳过的 key 越多, 耗时就越长. 而一个 sst 可能存储几十万个 key 标记, 这样操作就是秒级别, 甚至是数秒级别! 而且 CPU 占用是 100%.

对应的源码在 db_iter.cc 中:

void DBIter::FindNextUserEntry(bool skipping, std::string* skip) {
    // Loop until we hit an acceptable entry to yield
    do {
        ParsedInternalKey ikey;
        if (ParseKey(&ikey) && ikey.sequence <= sequence_) {
            switch (ikey.type) {
                case kTypeDeletion:
                    // Arrange to skip all upcoming entries for this key since
                    // they are hidden by this deletion.
                    SaveKey(ikey.user_key, skip);
                    skipping = true;
                    break;
                case kTypeValue:
                    if (skipping &&
                            user_comparator_->Compare(ikey.user_key, *skip) <= 0) {
                        // Entry hidden
                    } else {
                        valid_ = true;
                        saved_key_.clear();
                        return;
                    }
                    break;
            }
        }
        iter_->Next();
    } while (iter_->Valid());
}

其中, case kTypeDeletion 分支就是跳过删除标记. 这个缺陷目前来看, 是无法解决的, 只能期待 compaction 把这些 obsoleted 的数据真正地从硬盘上删除.

另一种方案是重新设计数据结构, 把删除标记分开存储, 这样就可以快速的跳过, 而不用扫描遍历.


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

计算群体智能基础

计算群体智能基础

恩格尔伯里特 / 谭营 / 2009-10 / 69.00元

《计算群体智能基础》全面系统地介绍了计算群体智能中的粒子群优化(PSO)和蚁群优化(ACO)的基本概念、基本模型、理论分析及其应用。在简要介绍基本优化理论和总结各类优化问题之后,重点介绍了社会网络结构如何在个体间交换信息以及个体聚集行为如何形成一个功能强大的有机体。在概述了进化计算后,重点论述了粒子群优化和蚁群优化的基本模型及其各种变体,给出了分析粒子群优化模型的一种通用方法,证明了基于蚂蚁行为实......一起来看看 《计算群体智能基础》 这本书的介绍吧!

JSON 在线解析
JSON 在线解析

在线 JSON 格式化工具

SHA 加密
SHA 加密

SHA 加密工具

RGB HSV 转换
RGB HSV 转换

RGB HSV 互转工具