微软分享史上最大基于Transformer架构的语言生成模型

栏目: IT技术 · 发布时间: 4年前

微软分享史上最大基于Transformer架构的语言生成模型

微软AI&Research今天分享了有史以来最大的基于Transformer架构的语言生成模型Turing NLG(下文简称为T-NLG),并开源了一个名为DeepSpeed的深度学习库,以简化对大型模型的分布式培训。

基于Transformer的架构,意味着该模型可以生成单词来完成开放式文本任务。除了完成未完成的句子外,它还可以生成对输入文档的问题和摘要的直接答案。

去年8月,英伟达曾宣布已训练世界上最大的基于Transformer的语言模型,当时该模型使用了83亿个参数,比BERT大24倍,比OpenAI的GPT-2大5倍。

而此次微软所分享的模型,T-NLG的参数为170亿个,是英伟达的Megatron(现在是第二大Transformer模型)的两倍,其参数是OpenAI的GPT-2的十倍。微软表示,T-NLG在各种语言建模基准上均优于最新技术,并在应用于许多实际任务(包括总结和问题解答)时表现出色。

微软分享史上最大基于Transformer架构的语言生成模型

不过,像Google的Meena一样,最初使用GPT-2,T-NLG最初只能在私人演示中共享。

微软AI研究应用科学家Corby Rosset在博客文章中写道:“除了通过汇总文档和电子邮件来节省用户时间之外,T-NLG还可以通过为作者提供写作帮助,并回答读者可能对文档提出的问题,由此来增强Microsoft Office套件的使用体验。”

具有Transformer架构的语言生成模型可以预测下一个单词。它们可用于编写故事,以完整的句子生成答案以及总结文本。

微软表示,他们的目标是在任何情况下都能够像人类一样直接,准确,流畅地做出响应:以前,问题解答和摘要系统依赖于从文档中提取现有内容,这些内容可以作为备用答案或摘要,但它们通常看起来不自然或不连贯。使用T-NLG这样的自然语言生成模型,可以自然地总结或回答有关个人文档或电子邮件主题的问题。

来自AI领域的专家告诉VentureBeat,2019年是NLP模型开创性的一年——使用Transformer架构无疑是2019年最大的机器学习趋势之一,这导致了语言生成领域和GLUE基准测试领导者的进步,Facebook的RoBERTa、谷歌的XLNet和微软的MT-DNN都纷纷加入到各类基准测试榜首的争夺当中。

同样是在今天,微软还开源了一个名为DeepSpeed的深度学习库。该学习库已针对开发人员进行了优化,以提供低延迟、高吞吐量的推理。

DeepSpeed包含零冗余优化器(ZeRO),用于大规模训练具有1亿个或更多参数的模型,微软过去曾用它训练T-NLG。

微软表示,DeepSpeed和ZeRO使得他们能够降低模型并行度(从16降低到4),将每个节点的批处理大小增加四倍,并将训练时间减少了三分之二;DeepSpeed使用更少的GPU可以使大型模型的训练效率更高。

开发人员和机器学习从业人员都可以使用DeepSpeed和ZeRO,因为培训大型网络(例如利用Transformer架构的网络)可能会很昂贵,并且可能会遇到大规模问题。

另外,Google的DeepMind今天也发布了一种新的远程内存模型Compressive Transformer,以及一种针对书本级语言建模的新基准PG19。

雷锋网编译,via VentureBeat

雷锋网雷锋网雷锋网 (公众号:雷锋网)

雷锋网原创文章,未经授权禁止转载。详情见 转载须知

微软分享史上最大基于Transformer架构的语言生成模型


以上所述就是小编给大家介绍的《微软分享史上最大基于Transformer架构的语言生成模型》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Java Web整合开发王者归来

Java Web整合开发王者归来

刘京华 / 清华大学 / 2010-1 / 99.80元

《Java Web整合开发王者归来(JSP+Servlet+Struts+Hibernate+Spring)》全面介绍了Java Web开发中的各种相关技术及知识。全书分为9篇,内容层次清晰,难度循序渐进。第1篇为入门篇,内容包括Java Web开发概述等;第2篇为基础篇,内容包括Servlet技术、JSP技术、会话跟踪、过滤器Filter、监听器Listener等;第3篇为高级篇,内容包括JST......一起来看看 《Java Web整合开发王者归来》 这本书的介绍吧!

MD5 加密
MD5 加密

MD5 加密工具

XML、JSON 在线转换
XML、JSON 在线转换

在线XML、JSON转换工具

HEX CMYK 转换工具
HEX CMYK 转换工具

HEX CMYK 互转工具