内容简介:The documentation in this repository describe the FullStack webscrapping platform for use in Machine learning.
The documentation in this repository describe the FullStack webscrapping platform for use in Machine learning.
Architecture
We first break the architecture into four distictive components namely Front-End, API, Scrapers and Database. The user sends information from the front-end to the API, the fron-end connects the API through a form. Inputs like the youtube URL are sent through front-end. Later the scrapers through the API pulls the necessary data and is saved to the database. Afterwhich the data is served to the front-end.
The Tech Stack are as below
- Front-End - javascript
- API - express
- scraper - puppeteer
- db - mysql (typeorm)
Also we need nodejs, npm and mysql.
The Architecture consists of several components:
Front End
For the Front-end we will have a header, an input box and a button. Below which we will have render boxes which renders relevant info from json. This will send data to the API.
API
We will have to create a single route with two methods GET and POST. We use nodejs and simple backed framework express.
Scraper
This function takes in URL and reaches out to YouTube, fetch the relevant data and then store it into the database.
Database
We use mySQL here. Here we add id, name, avatar and channelURL
To run the program
First go into server
$ npm install init
Install all the necessary packages
$ npm install express $ npm install body-parser
Run the index.js script
$ node index.js
Thanks to Aron from Uber
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Python金融衍生品大数据分析:建模、模拟、校准与对冲
【德】Yves Hilpisch(伊夫·希尔皮斯科) / 蔡立耑 / 电子工业出版社 / 2017-8 / 99.00
Python 在衍生工具分析领域占据重要地位,使机构能够快速、有效地提供定价、交易及风险管理的结果。《Python金融衍生品大数据分析:建模、模拟、校准与对冲》精心介绍了有效定价期权的四个领域:基于巿场定价的过程、完善的巿场模型、数值方法及技术。书中的内容分为三个部分。第一部分着眼于影响股指期权价值的风险,以及股票和利率的相关实证发现。第二部分包括套利定价理论、离散及连续时间的风险中性定价,并介绍......一起来看看 《Python金融衍生品大数据分析:建模、模拟、校准与对冲》 这本书的介绍吧!