如何使用弱引用优化 Python 程序的内存占用?

栏目: IT技术 · 发布时间: 4年前

内容简介:Python 的垃圾回收机制通过引用计数来决定一个对象要不要被回收。当一个对象被引用次数为0时,它就会被作为垃圾回收从而释放 Python 内存。但有些情况下,我们的代码可能在不经意间导致某些实际上我们不再使用的对象的引用计数始终大于0,从而无法被垃圾回收。

Python 的垃圾回收机制通过引用计数来决定一个对象要不要被回收。当一个对象被引用次数为0时,它就会被作为垃圾回收从而释放 Python 内存。

如何使用弱引用优化 Python 程序的内存占用?

但有些情况下,我们的代码可能在不经意间导致某些实际上我们不再使用的对象的引用计数始终大于0,从而无法被垃圾回收。

我们举个例子:

很多人喜欢使用字典来存放一些数据,假设我现在有一个字典是这样的:

animal = {'Monkey': monkey_obj, 'Tiger': tiger_obj, 'Panda': panda_obj} 

其中monkey_obj, tiger_obj, panda_obj都是对象。在我们的程序中,可能会传入不同的字符串来读取不同的对象。当我们把这些对象放进字典中的时候,它的引用计数已经被+1了。

但是,panda_obj这个对象比较特殊,它只会在程序运行的早期被查出来使用1次。之后就再也不会使用了。

但由于这个对象被放在字典里面,所以这个对象的引用计数始终大于0,Python 的垃圾回收机制就会认为这个对象还会被使用,于是它就会始终占用内存。

在数据处理领域或者图像处理领域,经常会出现字典的值占用大量内存的情况,这种情况就会导致内存的浪费。

为了解决这种情况,我们可以使用 Python 自带的weakref模块,它里面有一个WeakValueDictionary,就是用来处理这种情况的。

我们来看看如何使用它:

import weakref 
class Panda: 
    def __init__(self, name): 
        self.name = name 
     
    def walk(self): 
        print('我是一只熊猫,正在走路') 
 
class Tiger: 
    pass 
 
 
class Monkey: 
    pass 
panda = Panda('xyz') 
tiger = Tiger() 
Monkey = Monkey() 
 
 
weak_dict = weakref.WeakValueDictionary() 
weak_dict['Panda'] = panda 
weak_dict['Tiger'] = tiger 
weak_dict['Monkey'] = moneky 

使用 weak_dict 就像使用普通的字典一样。但赋值时,值的引用计数不会改变。

这样当我们在其他地方删除panda这个字典时,就不会由于字典占用了一个引用计数而导致无法被垃圾回收问题。


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

使用HTML5和Node构建超媒体API

使用HTML5和Node构建超媒体API

【美】Mike Amundsen(麦克.阿蒙森) / 臧秀涛 / 电子工业出版社 / 2014-5 / 55.00元

《使用HTML5和Node构建超媒体API》探讨了超媒体API 的设计,介绍了作为超媒体API 的构件块的超媒体因子,并讲解了基本格式、状态转移、领域风格和应用流程这4 种超媒体设计元素;之后作者结合具体的场景,通过3个动手实验章节,从超媒体因子和超媒体设计元素入手,用实际的代码向我们详细地演示了超媒体API 的设计;最后介绍了超媒体设计的文档编写、注册与发布等内容。 《使用HTML5和No......一起来看看 《使用HTML5和Node构建超媒体API》 这本书的介绍吧!

URL 编码/解码
URL 编码/解码

URL 编码/解码

html转js在线工具
html转js在线工具

html转js在线工具

UNIX 时间戳转换
UNIX 时间戳转换

UNIX 时间戳转换