分布式负载均衡算法之亲和性轮询原理

栏目: IT技术 · 发布时间: 4年前

内容简介:无论是在早期的负载均衡器中,还是当前微服务基于客户端的负载均衡中,都有一个最基础的轮询算法,即将请求平均分布给多台机器,今天聊聊在此基础上, kube proxy是如何实现亲和性轮询的核心数据结构. 了解亲和性策略实现,失败重试等机制

无论是在早期的负载均衡器中,还是当前微服务基于客户端的负载均衡中,都有一个最基础的轮询算法,即将请求平均分布给多台机器,今天聊聊在此基础上, kube proxy是如何实现亲和性轮询的核心数据结构. 了解亲和性策略实现,失败重试等机制

1. 基础筑基

1.1 Service与Endpoints

分布式负载均衡算法之亲和性轮询原理 Service和Endpoint是kubernetes中的概念,其中Service代表一个服务,后面通常会对应一堆pod,因为pod的ip并不是固定的,用Servicel来提供后端一组pod的统一访问入口, 而Endpoints则是一组后端提供相同服务的IP和端口集合在这节内容中大家知道这些就可以来,

1.2 轮询算法

分布式负载均衡算法之亲和性轮询原理 轮询算法可能是最简单的算法了,在 go 里面大多数实现都是通过一个slice存储当前可以访问的后端所有地址,而通过index来保存下一次请求分配的主机在slice中的索引

1.3 亲和性

分布式负载均衡算法之亲和性轮询原理 亲和性实现上也相对简单,所谓亲和性其实就是当某个IP重复调用后端某个服务,则将其转发到之前转发的机器上即可

2. 核心数据结构实现

2.1 亲和性实现

分布式负载均衡算法之亲和性轮询原理

2.1.1 亲和性之亲和性策略

亲和性策略设计上主要是分为三个部分实现:affinityPolicy:亲和性类型,即根据客户端的什么信息来做亲和性依据,现在是基于clientipaffinityMap:根据Policy中定义的亲和性的类型作为hash的key, 存储clientip的亲和性信息ttlSeconds: 存储亲和性的过期时间, 即当超过该时间则会重新进行RR轮询算法选择

type affinityPolicy struct {
    affinityType v1.ServiceAffinity // Type字段只是一个字符串不需要深究
    affinityMap  map[string]*affinityState // map client IP -> affinity info
    ttlSeconds   int
}复制代码

2.1.2 亲和性之亲和性状态

上面提到会通过affinityMap存储亲和性状态, 其实亲和性状态里面关键信息有两个endpoint(后端要访问的endpoint)和lastUsed(亲和性最后被访问的时间)

type affinityState struct {
    clientIP string
    //clientProtocol  api.Protocol //not yet used
    //sessionCookie   string       //not yet used
    endpoint string
    lastUsed time.Time 
}复制代码

2.2 Service数据结构之负载均衡状态

分布式负载均衡算法之亲和性轮询原理 balancerState存储当前Service的负载均衡状态数据,其中endpoints存储后端pod的ip:port集合, index则是实现RR轮询算法的节点索引, affinity存储对应的亲和性策略数据

type balancerState struct {
    endpoints []string // a list of "ip:port" style strings
    index     int      // current index into endpoints
    affinity  affinityPolicy
}复制代码

2.3 负载均衡轮询数据结构

分布式负载均衡算法之亲和性轮询原理 核心数据结构主要通过services字段来保存服务对应的负载均衡状态,并通过读写锁来进行service map进行保护

type LoadBalancerRR struct {
    lock     sync.RWMutex
    services map[proxy.ServicePortName]*balancerState
}复制代码

2.4 负载均衡算法实现

我们只关注负载均衡进行轮询与亲和性分配的相关实现,对于感知service与endpoints部分代码,省略更新删除等逻辑, 下面章节是NextEndpoint实现

2.4.1 加锁与合法性效验

合法性效验主要是检测对应的服务是否存在,并且检查对应的endpoint是否存在

lb.lock.Lock()
    defer lb.lock.Unlock() // 加锁
    // 进行服务是否存在检测
    state, exists := lb.services[svcPort]
    if !exists || state == nil {
        return "", ErrMissingServiceEntry
    }
    // 检查服务是否有服务的endpoint
    if len(state.endpoints) == 0 {
        return "", ErrMissingEndpoints
    }
    klog.V(4).Infof("NextEndpoint for service %q, srcAddr=%v: endpoints: %+v", svcPort, srcAddr, state.endpoints)复制代码

2.4.2 亲和性类型支持检测

通过检测亲和性类型,确定当前是否支持亲和性,即通过检查对应的字段是否设置

sessionAffinityEnabled := isSessionAffinity(&state.affinity)

func isSessionAffinity(affinity *affinityPolicy) bool {
    // Should never be empty string, but checking for it to be safe.
    if affinity.affinityType == "" || affinity.affinityType == v1.ServiceAffinityNone {
        return false
    }
    return true
}复制代码

2.4.3 亲和性匹配与最后访问更新

亲和性匹配则会优先返回对应的endpoint,但是如果此时该endpoint已经访问失败了,则就需要重新选择节点,就需要重置亲和性

var ipaddr string
    if sessionAffinityEnabled {
        // Caution: don't shadow ipaddr
        var err error
        // 获取对应的srcIP当前是根据客户端的ip进行匹配
        ipaddr, _, err = net.SplitHostPort(srcAddr.String())
        if err != nil {
            return "", fmt.Errorf("malformed source address %q: %v", srcAddr.String(), err)
        }
        
        // 亲和性重置,默认情况下是false, 但是如果当前的endpoint访问出错,则需要重置
        // 因为已经连接出错了,肯定要重新选择一台机器,当前的亲和性就不能继续使用了
        if !sessionAffinityReset {
            // 如果发现亲和性存在,则返回对应的endpoint
            sessionAffinity, exists := state.affinity.affinityMap[ipaddr]
            if exists && int(time.Since(sessionAffinity.lastUsed).Seconds()) < state.affinity.ttlSeconds {
                // Affinity wins.
                endpoint := sessionAffinity.endpoint
                sessionAffinity.lastUsed = time.Now()
                klog.V(4).Infof("NextEndpoint for service %q from IP %s with sessionAffinity %#v: %s", svcPort, ipaddr, sessionAffinity, endpoint)
                return endpoint, nil
            }
        }
    }复制代码

2.4.4 根据clientIP构建亲和性状态

// 获取一个endpoint, 并更新索引
    endpoint := state.endpoints[state.index]
    state.index = (state.index + 1) % len(state.endpoints)

    if sessionAffinityEnabled {
        // 保存亲和性状态
        var affinity *affinityState
        affinity = state.affinity.affinityMap[ipaddr]
        if affinity == nil {
            affinity = new(affinityState) //&affinityState{ipaddr, "TCP", "", endpoint, time.Now()}
            state.affinity.affinityMap[ipaddr] = affinity
        }
        affinity.lastUsed = time.Now()
        affinity.endpoint = endpoint
        affinity.clientIP = ipaddr
        klog.V(4).Infof("Updated affinity key %s: %#v", ipaddr, state.affinity.affinityMap[ipaddr])
    }

    return endpoint, nil复制代码

好了,今天的分析就到这里,希望能帮组到大家,了解亲和性轮询算法的实现, 学习到核心的数据结构设计,以及在产生中应对故障的一些设计,就到这里,感谢大家分享关注,谢谢大家

微信号:baxiaoshi2020 分布式负载均衡算法之亲和性轮询原理

关注公告号阅读更多源码分析文章 分布式负载均衡算法之亲和性轮询原理

更多文章关注 www.sreguide.com

本文由博客一文多发平台 OpenWrite 发布


以上所述就是小编给大家介绍的《分布式负载均衡算法之亲和性轮询原理》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Spring实战(第4版)

Spring实战(第4版)

Craig Walls 沃尔斯 / 张卫滨 / 人民邮电出版社 / 2016-4-1 / CNY 89.00

《Spring实战(第4版)》是经典的、畅销的Spring学习和实践指南。 第4版针对Spring 4进行了全面更新。全书分为四部分。第1部分介绍Spring框架的核心知识。第二部分在此基础上介绍了如何使用Spring构建Web应用程序。第三部分告别前端,介绍了如何在应用程序的后端使用Spring。第四部分描述了如何使用Spring与其他的应用和服务进行集成。 《Spring实战(第4......一起来看看 《Spring实战(第4版)》 这本书的介绍吧!

HTML 压缩/解压工具
HTML 压缩/解压工具

在线压缩/解压 HTML 代码

JSON 在线解析
JSON 在线解析

在线 JSON 格式化工具

RGB CMYK 转换工具
RGB CMYK 转换工具

RGB CMYK 互转工具