内容简介:Every Tuesday I highlight an interesting paper that I came across in research or work. I hope that my review can help you get the juiciest part of the paper under 2 minutes!It is widely accepted that CNNs learn images by extracting shape features like curv
Food for Thought — Paper Tuesday
Use Shape-biased Data Improves Accuracy and Robustness
Every Tuesday I highlight an interesting paper that I came across in research or work. I hope that my review can help you get the juiciest part of the paper under 2 minutes!
Basic Ideas
It is widely accepted that CNNs learn images by extracting shape features like curves and edges. However, a group of researchers from University of Tuebingen and Edinburgh challenged this belief in their ICLR 2019 paper ImageNet-Trained CNNs Are Biased Towards Texture; Increasing Shape Bias Improves Accuracy and Robustness .
Here’s the link: https://openreview.net/pdf?id=Bygh9j09KX
By cleverly crafting several experiments, the researchers demonstrated CNNs are more biased toward image textures than people would expect. From that, they further found that shape-enhanced dataset can serve as an effective data augmentation method that improves model accuracy and robustness.
The researchers argued that CNNs are heavily biased toward local features, perhaps due to the small perception field of convolution filters. Their argument is supported by CNN’s surprisingly low performance on texture-free images demonstrated in the image below
As demonstrated in the figure, all major-league architectures like AlexNet, GoogleNet, and VGG16 experience significant performance drops when texture information is removed (silhouette and edge). Meanwhile, CNNs yield high confidence even when shape information is removed as long as texture is present (texture).
Results
In order to further test their hypothesis, the researchers generated a new dataset called Stylized-ImageNet (SIN), whose images’ local texture features are replaced by uninformative random features.
If CNNs are biased toward local texture features, we would expect CNNs trained on the original ImageNet dataset to perform poorly on SIN. This is indeed the case, as demonstrated in the following table
Okay, now we are convinced that CNNs are biased toward local textures. But how can we use this inforamtion to our advantage? The researchers demonstrated that models jointly trained on SIN and IN is more robust to image distortion (noise, cropping, filtering…) and achieve outstanding accuracies in image classification and object detection.
Some Thoughts
For a long time I was convinced that CNNs are capable of image classification because of its powerful edge detectors. This paper opened a new door for us — there are some many handwaving explaination and understanding of neural networks. There are still a lot of theoretical work ahead to understand even one of the simplest forms of neural networks!
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
计算统计
Geof H.Givens、Jennifer A.Hoeting / 王兆军、刘民千、邹长亮、杨建峰 / 人民邮电出版社 / 2009-09-01 / 59.00元
随着计算机的快速发展, 数理统计中许多涉及大计算量的有效方法也得到了广泛应用与迅猛发展, 可以说, 计算统计已是统计中一个很重要的研究方向. 本书既包含一些经典的统计计算方法, 如求解非线性方程组的牛顿方法、传统的随机模拟方法等, 又全面地介绍了近些年来发展起来的某些新方法, 如模拟退火算法、基因算法、EM算法、MCMC方法、Bootstrap方法等, 并通过某些实例, 对这些方法的应用进行......一起来看看 《计算统计》 这本书的介绍吧!