内容简介:Twinkle Notes is a privacy-first personal knowledge base with end-to-end encrypted syncing. Notes are stored in encrypted sqlite3 files (SQLCipher). For further information, seeWe decide to open source the app because we believeTwinkle Notes can be develop
Twinkle Notes
Twinkle Notes is a privacy-first personal knowledge base with end-to-end encrypted syncing. Notes are stored in encrypted sqlite3 files (SQLCipher). For further information, see https://twinkle.app
We decide to open source the app because we believe
- You should trust code only when data privacy matters;
- Security bugs are easier to find when code is published.
START APP SERVER
Twinkle Notes can be developed with any text editor, and then test and debug it inside browser as a web app.
To run twinkle notes as a standalone app server, first make sure you have both twinkle-lisp
and twinkle-notes
checked out under the same directory.
Then
cd twinkle-notes ln -s ../twinkle-lisp/lisp . ../twinkle-lisp/twk launch control --port ,6782
Now you can use twinkle notes as a webapp from browser http://127.0.0.1:6782
.
The "backend" is implemented inside directory site-lisp
, and "frontend" in web
.
They are the core of the app, and where the majority of our time is spent.
PLATFORM APPS
Twinkle Notes app server can be embedded within an application, which only includes a webview to display app UI. On Android/iOS/Mac, we use system provided webview to minimize memory footprint; On windows/linux, we have no choice but to use chromium embedded framework.
See src/**
for platform specific implementations.
LICENSE
Unless specified individually or originated from other projects, files from this project are released under AGPL license (See LICENSE).
以上所述就是小编给大家介绍的《Cross platform end-to-end encrypted notes app》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
机器学习基础教程
(英)Simon Rogers,、Mark Girolami / 郭茂祖、王春宇 刘扬 刘晓燕、刘扬、刘晓燕 / 机械工业出版社 / 2014-1 / 45.00
本书是一本机器学习入门教程,包含了数学和统计学的核心技术,用于帮助理解一些常用的机器学习算法。书中展示的算法涵盖了机器学习的各个重要领域:分类、聚类和投影。本书对一小部分算法进行了详细描述和推导,而不是简单地将大量算法罗列出来。 本书通过大量的MATLAB/Octave脚本将算法和概念由抽象的等式转化为解决实际问题的工具,利用它们读者可以重新绘制书中的插图,并研究如何改变模型说明和参数取值。......一起来看看 《机器学习基础教程》 这本书的介绍吧!