What `R` you? (R list in python)

栏目: IT技术 · 发布时间: 5年前

内容简介:Like

A R list is a python …

Like R vectors, it depends. A R list will behave differently in python depending if it is named or not.

Unnamed R list

An unnamed list in R is a python list but this does not mean R and python lists have the exact same traits. After all, they are different languages.

library(tidyverse)
library(reticulate)
conda_list()[[1]] %>% use_condaenv()

Relement_int=2L
Relement_bool=TRUE
Relement_char="banana"

Rlist_nameno<-list(Relement_int, Relement_bool, Relement_char)

class(Rlist_nameno)
## [1] "list"
r_to_py(Rlist_nameno) %>% class()
## [1] "python.builtin.list"   "python.builtin.object"

Special case for tuples

python has a structure similar to a python list, it is known as a tuple . There are no R data structures which are converted to python ’s tuple. Nonetheless, you can create a tuple directly in R and call it later in python .

Rtuple<-tuple(66,99)
class(Rtuple)
## [1] "python.builtin.tuple"  "python.builtin.object"

A tuple created in R is still a tuple when it is translated into python .

r_to_py(Rtuple) %>% class()
## [1] "python.builtin.tuple"  "python.builtin.object"

When you print a tuple created in R , it appears as a tuple with the elements sandwiched between ( ) .

Rtuple
## (66.0, 99.0)

However, when you create a tuple in python and translate it into R , the tuple gets converted into an unnamed R list.

py_run_string("Ptuple=(66,99)")

py$Ptuple
## [[1]]
## [1] 66
## 
## [[2]]
## [1] 99

Named R list

A named R list is a python dictionary

Rlist_nameyes = list(int= Relement_int, bool=Relement_bool, char=Relement_char)
class(Rlist_nameyes)
## [1] "list"
r_to_py(Rlist_nameyes) %>% class()
## [1] "python.builtin.dict"   "python.builtin.object"

In a named R list, the names of each element list are similar to the keys in a python dictionary.

names(Rlist_nameyes)
## [1] "int"  "bool" "char"
py_eval("r.Rlist_nameyes.keys()")
## dict_keys(['int', 'bool', 'char'])

The constituent elements of each element list are equivalent to the values in a python dictionary.

Rlist_nameyes
## $int
## [1] 2
## 
## $bool
## [1] TRUE
## 
## $char
## [1] "banana"
py_eval("r.Rlist_nameyes")
## $int
## [1] 2
## 
## $bool
## [1] TRUE
## 
## $char
## [1] "banana"

Creating dictionaries directly

You can create python dictionary directly in R with the dict function.

Rdict<-dict(int= Relement_int, bool=Relement_bool, char=Relement_char)
class(Rdict)
## [1] "python.builtin.dict"   "python.builtin.object"

Let’s check that python recognises the dictionary created by R as legitimate python dictionary structure.

r_to_py(Rdict) %>% class()
## [1] "python.builtin.dict"   "python.builtin.object"

A dictionary created in R prints like dictionary in python where the {} embraces the keys and values, and the keys and values are separated with : .

Rdict
## {'int': 2, 'bool': True, 'char': 'banana'}

Sub setting

In R , the sub setting approach will influence whether the name of element list and the consistent elements will be printed or just the consistent elements will be printed. The former is known as preserving sub setting and the latter is known as simplified sub setting .

  1. Preserving sub setting

The structure of input is preserved in the output. When the input is a list, the output is a list. As the output is a list, it allows both the name of the element list and its constituent elements to be printed out. In R , you wrap the name of the element list between singular square brackets [ ] .

Rlist_nameyes["int"]
## $int
## [1] 2

To achieve the same with a python dictionary would mean that given a key, the corresponding key-value pair will be printed. I’m not sure of the most elegant technique to extract specific key-value pair from a python dictionary based on a given key but I found this technique works .

py_run_string("dictfilt = lambda x, y: dict([ (i,x[i]) for i in x if i in set(y)])")

py_eval("dictfilt(r.Rlist_nameyes, ['int'])")
## $int
## [1] 2
  1. Simplified sub setting

This approach “returns the simplest possible data structure that can represent the output” . Simplified sub setting a R list will yield a vector. In other words, sub setting using the name of the element will result in only the constituent elements. The name of element list will not be printed out in the output unlike in persevered sub setting. In R , you either wrap the name of the element list between dual square brackets [[ ]]

Rlist_nameyes[["int"]]
## [1] 2

or use the dollar sign syntax $

Rlist_nameyes$int
## [1] 2

Extracting just the value in a python dictionary is done by wrapping the key between singular square bracket [ ] (notice the difference between R and python when using [ ] to subset) .

py_eval("r.Rlist_nameyes['int']")
## [1] 2

以上所述就是小编给大家介绍的《What `R` you? (R list in python)》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

HTML 5 与 CSS 3 权威指南

HTML 5 与 CSS 3 权威指南

陆凌牛 / 机械工业出版社华章公司 / 2011-4-7 / 69.00

如果你是一位有前瞻性的web前端工作者,那么你一定会从本书中受益,因为它就是专门为你打造的。 《HTML 5与CSS 3权威指南》内容系统而全面,详尽地讲解了html 5和css 3的所有新功能和新特性;技术新颖,所有知识点都紧跟html 5与css 3的最新发展动态(html 5和css 3仍在不断完善之中);实战性强(包含246个示例页面),不仅每个知识点都配有精心设计的小案例(便于动手......一起来看看 《HTML 5 与 CSS 3 权威指南》 这本书的介绍吧!

CSS 压缩/解压工具
CSS 压缩/解压工具

在线压缩/解压 CSS 代码

SHA 加密
SHA 加密

SHA 加密工具

RGB HSV 转换
RGB HSV 转换

RGB HSV 互转工具