内容简介:Elasticsearch (ES) 是一个数据库,提供了分布式的、准实时搜索和分析。基于 Apache Lucene,可以操作结构化数据、非结构化数据、数字类型数据、地理空间数据。数据存储使用松散结构的 JSON 文档。
内容概要
-
ES 基础介绍,重点是其中的核心概念。
-
基础 API 实践操作。
1. 基础介绍
Elasticsearch (ES) 是一个数据库,提供了分布式的、准实时搜索和分析。
基于 Apache Lucene,可以操作结构化数据、非结构化数据、数字类型数据、地理空间数据。
数据存储使用松散结构的 JSON 文档。
主要特性
-
轻量快速的全文搜索。
-
安全分析和基础设施监控。
-
支持海量规模,数千台服务器、PB级数据量。
-
可以集成可视化数据分析工具,用于例如应用性能分析、日志监控、基础设施度量指标监控。
-
可以用于机器学习,对数据实时进行自动化模型处理。
核心概念
-
Index 索引
关系数据库中的 表 ,存储文档。
6.0.0 版本之前,一个索引中可以存放不同类型的文档,例如 Car 和 Bike 这2种文档可以在一个索引中。
6.0.0 版本之后,不可以了,需要为每种类型的文档建立不同的索引。
-
Documents 文档
关系数据库中的 行 。
每个文档有一个唯一 _id 。
-
Fields 字段
关系数据库中的 列 。
-
数据类型
1)字符串
有2种类型: text 和 keyword 。
text
用户存储产品描述、文章内容之类的文本,可以根据关键字在其中查找。
ES 会把内容解析成一个字符串列表,然后创建倒排索引,描述每个单词都在哪些文档中出现了。
例如一个文档有一个字段 “ Description ”,值为 “This phone has dual sim capability”。
这个值会被解析为一个列表:
[“this”, “phone”, “has”, “dual”, “sim”, “capability”]
倒排索引中,会指出每个词所在的文档列表,如:
“this” -> doc_1,doc_3
Keyword
用于存储用户名、邮件地址、邮编这类的明确的内容。
这类内容不会被分割解析,适用于精确匹配。
2)数字
存储例如标识码、百分比、电话号等。
支持: long, integer, short, byte, double, float 。
3)日期
形式包括:“2015/01/01 12:10:30” 此类的字符串、微秒级 long 型数字、秒级 integer 型数字。
内部使用 UTC long 型存储。
4)布尔
5)IP
6)嵌入式
一个属性可以是一个 JSON 数组。
例如:
{
"name":"ABC United",
"homeGround":"Old Trafford",
"players":[
{
"firstName":"James",
"lastName":"Cohen",
"position":"Goal Keeper"
},
{
"firstName":"Paul",
"lastName":"Pogba",
"position":"Midfielder"
}
]
}
对于嵌入类型,每个数组对象都会被作为一个隐藏文档进行索引。
7)多类型
例如有一个字段 “ student_name ”,我们希望可以通过部分匹配的方式进行查找,也希望通过完全匹配的方式查找。
这就相当于同时有2种类型: text 和 keyword 。
可以这样设置:
{
"student_name":{
"type":"text",
"fields":{
"keyword":{
"type":"keyword"
}
}
}
}
-
Mapping
用于定义一个索引的 schema。
定义索引中有哪些字段、字段类型,配置类型相关的元数据。
-
Setting
通过 Setting 可以自定义一些索引的行为,还允许我们自定义分析器和标准化器,以分析索引的不同文本字段。
重要的 Setting 例如:
1) number_of_shards :定义索引分片数量,默认为 1。
2) number_of_replicas :定义分片的副本数量,默认 1。
3) refresh_interval :用于指定文档索引的时间与可供搜索的时间之间的间隔,默认 1秒。
-
Shard 分片
一个分片是一个 Lucene 实例,是一个被 ES 自动管理的工作单元。
我们只需要指定分片及其副本的数量,无需对分片进行操作。
ES 自动在所有节点中分布所有分片,当节点故障时,会把分片移到其他节点,当有新节点添加进来时,也会自动把一些分片移过来。
-
Replicas 副本
主分片的拷贝,副本的作用:
1)当主分片故障后,其副本可以提升为主分片。
2)主分片及其副本都可以处理查询请求,可以提升性能。
-
Aliases 别名
用于指定索引或索引集的替代名称。
当我们想从多个索引中获取文档时非常有用。
-
Template 模板
用户对多个索引指定通用的 mapping 和 Setting。
每当创建与模板中定义的特定模式匹配的新索引时,模板将应用于该索引。
创建索引时特别定义的任何 mapping/Setting 都将优先于模板中的定义。
2. API 操作
测试环境搭建
使用的 ES 版本为 7.5.1 。
下面使用 docker 启动一个单节点环境:
docker run -p 9200:9200 -p 9300:9300 -e "discovery.type=single-node" docker.elastic.co/elasticsearch/elasticsearch:7.5.1
测试:
$ curl -X GET "localhost:9200/_cat/nodes?v&pretty"
ip heap.percent ram.percent cpu load_1m load_5m load_15m node.role master name
172.17.0.2 7 97 2 0.96 0.61 0.25 dilm * 245e340eba97
$ curl localhost:9200
{
"name" : "245e340eba97",
"cluster_name" : "docker-cluster",
"cluster_uuid" : "mq_bxY5zTjCpmJU0xOLSbA",
"version" : {
"number" : "7.5.1",
"build_flavor" : "default",
"build_type" : "docker",
"build_hash" : "3ae9ac9a93c95bd0cdc054951cf95d88e1e18d96",
"build_date" : "2019-12-16T22:57:37.835892Z",
"build_snapshot" : false,
"lucene_version" : "8.3.0",
"minimum_wire_compatibility_version" : "6.8.0",
"minimum_index_compatibility_version" : "6.0.0-beta1"
},
"tagline" : "You Know, for Search"
}
参考文档:
https://www.elastic.co/guide/en/elasticsearch/reference/7.5/docker.html
实践操作
-
创建索引
curl -X PUT "localhost:9200/traveler?pretty" -H 'Content-Type: application/json' -d'
{
"settings":{
"number_of_shards":5,
"number_of_replicas":2
},
"mappings":{
"properties":{
"name":{
"type":"keyword"
},
"age":{
"type":"integer"
},
"background":{
"type":"text"
},
"nationality":{
"type":"keyword"
}
}
}
}
'
-
插入文档
curl -X PUT "localhost:9200/traveler/_doc/1?pretty" -H 'Content-Type: application/json' -d'
{
"name":"John Doe",
"age":"23",
"background":"Born and brought up in California. Engineer by profession. Loves to cook",
"nationality":"British"
}
'
-
读取文档
curl -X GET "localhost:9200/traveler/_doc/1?pretty"
-
删除文档
curl -X DELETE "localhost:9200/traveler/_doc/1?pretty"
-
删除索引
curl -X DELETE "localhost:9200/traveler?pretty"
-
所有索引列表
curl -X GET "localhost:9200/_cat/indices"
-
查看集群健康情况
curl -X GET "localhost:9200/_cat/health?v"
-
查看某个索引的信息
# mapping + setting
curl -X GET "localhost:9200/traveler?pretty"
# mapping
curl -X GET "localhost:9200/traveler/_mapping?pretty"
# setting
curl -X GET "localhost:9200/traveler/_settings?pretty"
-
为索引设置别名
curl -X POST "localhost:9200/_aliases" -H 'Content-Type: application/json' -d'
{
"actions":[
{
"add":{
"index":"traveler",
"alias":"read_alias"
}
}
]
}
'
-
获取索引中的所有文档
curl -X GET "localhost:9200/traveler/_search?pretty"
结果中的关键项:
took- 此次查询耗时,毫秒。
timed_out- 查询是否超时。
_shards- 查询了分片的情况,如一共查询了几个分片、成功了几个。
hits- 查询结果。
hits.total- 结果文档数。
hits.hits- 结果数组,默认只显示前10个文档。
hits.max_score- 匹配度最高的文档的分值。
hits.hits._score- 此文档匹配度分值。
-
获取所有中的文档总数
curl -X GET "localhost:9200/traveler/_count?pretty"
-
匹配查询
curl -X GET "localhost:9200/traveler/_search?pretty" -H 'Content-Type: application/json' -d'
{
"query":{
"match":{
"background":"brought up California Loves cook"
}
}
}
'
匹配条件是 "background",其值会被处理为数组:[“brought”, “up”, “california”, “loves”, “cook”]。
只要其中的某一个与文档中的 "background" 值相匹配,文档就会被返回。
-
term 查询
curl -X GET "localhost:9200/traveler/_search?pretty" -H 'Content-Type: application/json' -d'
{
"query":{
"term":{
"name":{
"value":"John Doe"
}
}
}
}
'
这用于获取在提供的字段中包含确切术语的文档。
适用于 keyword, numeric, date, boolean 类型的字段。
-
terms 查询
curl -X GET "localhost:9200/traveler/_search?pretty" -H 'Content-Type: application/json' -d'
{
"query":{
"terms":{
"name":[
"John Doe",
"Jack Ripper",
"Buzz Aldrin"
]
}
}
}
'
类似 IN 查询,匹配一个或多个。
-
前缀匹配查询
curl -X GET "localhost:9200/traveler/_search?pretty" -H 'Content-Type: application/json' -d'
{
"query":{
"prefix":{
"name":"Joh"
}
}
}
'
-
正则查询
curl -X GET "localhost:9200/traveler/_search?pretty" -H 'Content-Type: application/json' -d'
{
"query":{
"regexp":{
"name":{
"value":"J.*e"
}
}
}
}
'
-
单次多查询
在一个请求中执行多个查询操作。
curl -X GET "localhost:9200/_msearch?pretty" -H 'Content-Type: application/x-ndjson' -d'
{"index":"traveler"}
{"query":{"terms":{"name":["John Doe","Jack Ripper","Barack Obama"]}}}
{}
{"query":{"prefix":{"name":"Buzz"}}}
{"index":"traveler"}
{"query":{"match_all":{}}}
'
推荐阅读:
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:- Elasticsearch 开箱指南
- 苹果的 AR 新工具 RealityComposer 开箱体验及操作指南
- Java 14 开箱,它真香香香香
- Java 14 开箱,它真香香香香
- 开箱即用的 WebRTC 开发环境
- 【开箱即食】命令行替你写表单
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Docker——容器与容器云
浙江大学SEL实验室 / 人民邮电出版社 / 2015-9-1 / 89.00元
本书从实践者的角度,在讲解Docker高级实践技巧的同时,深入到源代码层次,为读者梳理出Docker容器技术和基于Docker的容器云技术(如Kubernetes)的实现方法和设计思路,帮助读者理解如何在实际场景中利用Docker解决问题并启发新的思考。全书包括两部分,第一部分深入解读Docker容器技术,包括Docker入门、架构总览、Docker容器核心原理解读,以及Docker高级实践技巧;......一起来看看 《Docker——容器与容器云》 这本书的介绍吧!