Automatic Differentiation via Contour Integration

栏目: IT技术 · 发布时间: 5年前

内容简介:Automatic Differentiation via Contour IntegrationThere has previously been some back-and-forth among scientists about whether biological networks such as brains might compute derivatives. I have previously made my position on this issue clear:The standard

AutoDiff

Automatic Differentiation via Contour Integration

Motivation:

There has previously been some back-and-forth among scientists about whether biological networks such as brains might compute derivatives. I have previously made my position on this issue clear: https://twitter.com/bayesianbrain/status/1202650626653597698

The standard counter-argument is that backpropagation isn't biologically plausible but partial derivatives are very useful for closed-loop control so we are faced with a fundamental question we can't ignore. How might large branching structures in the brain and other biological systems compute derivatives?

After some reflection I realised that an important result in complex analysis due to Cauchy, the Cauchy Integral Formula, may be used to compute derivatives with a simple forward propagation of signals using a monte-carlo method. Incidentally, Cauchy also discovered the gradient descent algorithm.

Minimal implementation in the Julia language:

function mc_nabla(f, x::Float64, delta::Float64)

  ## automatic differentiation of holomorphic functions in a single complex variable
  ## applied to real-valued functions in a single variable

  N = round(Int,2*pi/delta)

  ## sample with only half the number of points: 
  sample = rand(1:N,round(Int,N/2)) 
  thetas = sample*delta

  ## collect arguments and rotations: 
  rotations = map(theta -> exp(-im*theta),thetas)
  arguments = x .+ conj.(rotations)  

  ## calculate expectation: 
  expectation = (2.0/N)*real(sum(map(f,arguments).*rotations))

  return expectation

end

Blog post:

https://keplerlounge.com/neural-computation/2020/01/16/complex-auto-diff.html

Jupyter Notebook:

https://github.com/AidanRocke/AutoDiff/blob/master/cauchy_tutorial.ipynb


以上所述就是小编给大家介绍的《Automatic Differentiation via Contour Integration》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

算法分析导论(第2版)(英文版)

算法分析导论(第2版)(英文版)

[美]Robert Sedgewick(罗伯特•塞奇威克)、[美]Philippe Flajolet(菲利普•弗拉若莱) / 电子工业出版社 / 2015-6 / 128.00元

《算法分析导论(第2版)(英文版)》全面介绍了算法的数学分析中所涉及的主要技术。涵盖的内容来自经典的数学课题(包括离散数学、初等实分析、组合数学),以及经典的计算机科学课题(包括算法和数据结构)。《算法分析导论(第2版)(英文版)》的重点是“平均情况”或“概率性”分析,书中也论述了“最差情况”或“复杂性”分析所需的基本数学工具。 《算法分析导论(第2版)(英文版)》第 1 版为行业内的经典著......一起来看看 《算法分析导论(第2版)(英文版)》 这本书的介绍吧!

RGB HSV 转换
RGB HSV 转换

RGB HSV 互转工具

HEX CMYK 转换工具
HEX CMYK 转换工具

HEX CMYK 互转工具

HSV CMYK 转换工具
HSV CMYK 转换工具

HSV CMYK互换工具