内容简介:AlthoughLet’s say you just decide to make plots usingIn this post, I will summarise the differences of these functions (i.e.
Although matplotlib
is extremely powerful and the only limitation might be our imagination, it is a bit challenging for new users to find the right path as there are always more than one way to achieve the same goal in matplotlib
. Calling axes
is one of them.
Let’s say you just decide to make plots using object-oriented interface ( aka artist layer plotting ) in matplotlib
. However, I bet you will be soon running into problems when trying to instantiate axes
to start your plotting. You may find that plt.subplots()
and plt.subplot()
both can return you axes
. Yes, they only differ by one letter ‘s’. Later, you notice that plt.axes()
can call axes
as well. It is not over yet, you highly likely will encounter the following functions fig.add_subplot()
, fig.add_axes()
, and fig.subplots()
, which are all able to create axes
for you. I totally understand how panic you are or will be as I have had the same confusion in learning matplotlib
.
In this post, I will summarise the differences of these functions (i.e. plt.subplot()
, plt.subplots()
, plt.axes()
, fig.add_subplot()
, fig.subplots()
, and fig.add_axes()
) and demonstrate how to use them accordingly.
In matplotlib
terminology, a basic plot starts from one figure
and at least one axes
(if you are confused about these terms, you may find this post is useful). A close analogy with painting, figure
is the canvas and axes
is the artistic composition. A canvas ( figure
) can have only one type or many different types of artistic composition ( axes
) on it. In light of this, let’s first start from a simple case for figure
with only one axes
, then dive into figure
with multiple axes
.
figure
with only one axes
In most circumstances, we instantiate a fig
object by calling fig = plt.figure(…)
and then add an axes
object to the fig
by calling ax = fig.add_subplot()
. By default, if leave the parentheses empty, this function is passed with fig.add_subplot(1, 1, 1)
, which means add # 1 axes
in a 1 row by 1 column axes
grid. We can also use an alternative format with 3-digit integer without comma (i.e. fig.add_subplot(111)
). However, with the 3-digit integer format, each integer cannot be greater than 9. Using this function, we add only one axes
at a time.
# Create a figure fig = plt.figure() # Add a subplot ax = fig.add_subplot() # Equivalent method ax = fig.add_subplot(111) # Another equivalent but more general method ax = fig.add_subplot(1, 1, 1)
Sometimes, we are able to add an axes
object using ax = fig.subplots()
. This function is originally devised to make it convenient to create a set of subplots in common layouts by a single call. It takes nrows
and ncols
as positional arguments (i.e. this function is supposed to add multiple axes
at a time). However, if we leave the parentheses empty, this function is passed with fig.subplots(1, 1)
by default, which means create an axes
grid with 1 row by 1 column (i.e. one axes
on fig
). Hence the axes only contain one item in it (i.e. len(ax)
is 1).
# Create a figure fig = plt.figure() # Create a subplot ax = fig.subplots() # Equivalent method ax = fig.subplots(1, 1)
Rarely, as for figure
with one plot, we may also use ax = fig.add_axes([left, bottom, width, height])
to add an axes
onto a fig
. This function enables arbitrary layouts of axes
on fig
by taking the dimensions ( [left, bottom, width, height]
) of the new axes
(you can find an example here ). All four numbers should be in fractions of figure
width and height. In other words, we control the position and size of the axes
. fig.add_axes([0, 0, 0.78, 0.78])
creates the same size plot as by fig.add_subplot(111)
and fig.subplots(1, 1)
. As you can see here, axes
is not in the same size as figure
. There is white space between axes
and figure
by default.
# Create a figure fig = plt.figure() # Add a subplot ax = fig.add_axes([0, 0, 0.78, 0.78])
After demonstrating the differences of the above three functions, it is fairly easy to understand plt.subplot()
, plt.subplots()
, and plt.axes()
. They are from state-based interface (aka scripting layer plotting) of matplotlib
, which just wrapped fig = plt.figure()
with fig.add_subplot()
, fig.subplots()
, and fig.add_axes()
, correspondingly.
plt.subplot()
returns only one axes
and create a figure
object automatically. You can change figure
-level attributes or save the figure
by calling ax.figure.xxx()
instead. For example, ax.figure.savefig('example.png')
will save the figure as example.png
.
# Creates just a figure and only one subplot ax = plt.subplot() # Equivalent method fig = plt.figure() ax = fig.add_subplot(1, 1, 1)
plt.subplots()
returns a tuple containing a figure
and axes
object(s). We need to unpack this tuple and assign its items to variables fig
and ax
, respectively.
# Creates just a figure and only one subplot fig, ax = plt.subplots() # Equivalent method fig = plt.figure() ax = fig.subplots(1, 1)
plt.axes()
returns one axes
using fig.add_subplot(1, 1, 1)
when no argument is provided and, just like plt.subplot()
, it creates a figure
object automatically. plt.axes()
also accept dimensions ( [left, bottom, width, height]
) using fig.add_axes([left, bottom, width, height])
in its backend. The following two sets of code create the same plots.
# Set one # Creates just a figure and only one subplot ax = plt.axes() # Equivalent method fig = plt.figure() ax = fig.add_subplot(1, 1, 1) ------------------------------------------- # Set two # Creates just a figure and only one subplot ax = plt.axes([0, 0, 0.78, 0.78]) # Equivalent method fig = plt.figure() ax = fig.add_axes([0, 0, 0.78, 0.78])
figure
with multiple axes
When it comes to plotting multiple axes
on figure
, the differences among these functions (i.e. plt.subplot()
, plt.subplots()
, plt.axes()
, fig.add_subplot()
, fig.subplots()
, and fig.add_axes()
) become manifest. Again, let’s demonstrate this using examples. Since plt.subplot()
, plt.subplots()
, and plt.axes()
are essentially the same as fig.add_subplot()
, fig.subplots()
, and fig.add_axes()
, I will only show examples for the later three functions.
As stated above, we add one axes
at a time when using fig.add_subplot()
. The build-in order of axes
is started from left to right and from top to bottom within the axes
grid (Figure 1).
The same layout could be obtained using fig.subplots()
with one line of code (Figure 2). It returns a ndarray
object axs
(I add a ‘s’ after ax
to show that it contains multiple objects). Just like an 2D array object, each ax
within axs
can be accessed using axs[x, y]
as well (i.e. ax1
can be accessed using axs[0, 0]
). Moreover, if you like to assign names to each ax
within axs
, you can use tuple unpacking like this, ((ax1, ax2), (ax3, ax4)) = fig.subplots(nrows=2, ncols=2)
. Flattening of 2D array is another method to access ax
from axs
as shown in Figure 2.
Normally, fig.add_axes()
is used for arbitrary layout, such as a plot with inlet subplots or subplots overlap with each other. This is because we can fine-tune the position and size of each subplot by its dimensions ( [left, bottom, width, height]
). Having said that, we still can make a common layout as shown in Figure 1 and 2 using fig.add_axes()
(Figure 3).
In summary, these six functions (concisely should be three functions, i.e. fig.add_subplot()
, fig.subplots()
, and fig.add_axes()
) can be used interchangeably when you are making a figure
with only one axes
. However, they have respective strengths and can be used individually or in combination when it comes to making figure
with multiple axes
in different layouts.
After reading this post, I hope you have a clearer understanding about how to call axes
in matplotlib
. All the codes in this post can be accessed from jupyter notebook . If you know other functions/cases to call axes
which are not listed here, please feel free to leave your comment. Let’s learn matplotlib together.
As always, I welcome feedback, constructive criticism, and hearing about your data science projects. I can be reached on Linkedin , and now on mywebsite as well.
以上所述就是小编给大家介绍的《How Many Ways To Call Axes In Matplotlib》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
C语言算法速查手册
程晓旭、耿鲁静、张海、王勇 / 2009-10 / 49.00元
《C语言算法速查手册》用C语言编写了科研和工程中最常用的166个算法,这些算法包括复数运算、多项式的计算、矩阵运算、线性代数方程组的求解、非线性方程与方程组的求解、代数插值法、数值积分法、常微分方程(组)初值问题的求解、拟合与逼近、特殊函数、极值问题、随机数产生与统计描述、查找、排序、数学变换与滤波等。同时结合这些算法列举了将近100个应用实例,对其进行验证和分析。 《C语言算法速查手册》适......一起来看看 《C语言算法速查手册》 这本书的介绍吧!